Matter & Interactions II, Week 11

More with circuits, and this time capacitors, and the brilliantly simple description M&I provides for their behavior. In chapter 19, we see that traditional textbooks have misled students in a very serious way regarding the behavior of capacitors. Those “other” textbooks neglect fringe fields. Ultimately, and unfortunately, this means that capacitors should not work at […]

Read More Matter & Interactions II, Week 11

Matter & Interactions II, Week 10

Chpater 18. Circuits. You don’t need resistance. You don’t need Ohm’s law. All you need is the fact that charged particles respond to electric fields created by other charged particles. It’s just that simple. When I took my first electromagnetism course, I felt stupid becuase I never could just look at a circuit and tell […]

Read More Matter & Interactions II, Week 10

Conceptual Understanding in Introductory Physics XIX: Why is current not a vector?

This is a very quick post addressing a frequently asked conceptual question. Maybe it my heightened awareness, but I’ve also seen this question asked a lot on various physics Q&A sites lately. It’s a question that gets to the heart of how vectors are often defined, loosely and incorrectly, in introductory physics. Here’s the question. […]

Read More Conceptual Understanding in Introductory Physics XIX: Why is current not a vector?

Conceptual Understanding in Introductory Physics XIV: Simple DC Circuits

This post continues this series into second semester introductory calculus-based physics, usually electromagnetic theory. This question addresses basic DC circuits. In a traditional introductory e&m course, circuits are presented with so many idealizations that according to such treatments simple circuits shouldn’t work at all! Two of the most important idealizations are that potential differences along […]

Read More Conceptual Understanding in Introductory Physics XIV: Simple DC Circuits